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The stochastic methods are applied for a description of adiabatic thermal 
explosion. The master equation is solved numerically for the system of i000 
molecules. The inverse reaction is neglected in our basic model, but we also 
study the case when this reaction is taken into account. For both models two 
maxima of probability distribution are observed for a certain period of time. It 
is shown that for low initial temperature the adiabatic thermal explosion is a 
process of high dispersion and the phenomenological description of this reaction 
can fail. 
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1. I N T R O D U C T I O N  

It is known that  combus t ion  (1/is one of  m a n y  chemical processes that  dis- 
play far-from-equilibrium behavior  like periodicity and chaotic  evolution. 
In this paper  we study the adiabatic thermal explosion, where observed 
nonequil ibrium effects are connected with great changes of  temperature  
during the reaction. The adiabatic thermal  explosion, together  with the 
chemical explosion, (7) are relatively simple reactions where far-from- 
equilibrium evolution is prominent .  In these cases the coupling between the 
dynamics of chemical process and fluctuations in the system can be so 
strong that fluctuations are self-accelerated. The dispersion of  such 
processes can be very high and it can cause transient bimodality.  The 
phenomenological  description of  chemical reaction deals with the average 
density of molecules. Such informat ion is of small value when the disper- 
sion of process is high. Therefore, the stochastic methods  must  be applied 
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because they give the time evolution of the density of probability of finding 
our system in different points of phase space. This density of probability 
contains all the information about fluctuations. The master equation, eqs. 
(5-7), has nonlinear coefficients in the case of adiabatic thermal explosion 
and its general analytical solution for the density of probability (3) is not of 
practical use. A useful analytical solution of the master equation is known 
for some approximate descriptions of the adiabatic thermal explosion 
without the inverse reaction. (3'6'1~ In this paper we solve numerically the 
master equation for the systems with and without the inverse reaction. 
Altl~ough our results are limited to the small systems (in this paper we are 
concerned with the systems of 1000 molecules) they can give some insight 
into the behavior of real systems and they suggest why and where the 
phenomenological description of chemical reactions can fail. 

The adiabatic thermal explosion, without the inverse reaction, has 
been studied numerically by the Brussels group, (3'6) but the data have been 
published for one model only. The published numerical data for the 
chemical explosion are more complete. (7) The purpose of this paper is to 
enlarge and enrich numerical data on the time evolution of the system that 
exhibits the adiabatic thermal explosion. We also study the problem of 
influence of the inverse reaction on thermal explosion. This problem has 
not been discussed yet. 

Our paper is divided into two parts. In the next section we introduce 
the phenomenological and stochastic description of adiabatic thermal 
explosion together with the three-level model for chemical reactions. The 
discussion of the time evolution of the system for different values of 
parameters describing the adiabatic thermal explosion is presented in Sec- 
tion 3. 

2. P H E N O M E N O L O G I C A L  A N D  S T O C H A S T I C  D E S C R I P T I O N  
OF THE A D I A B A T I C  T H E R M A L  EXPLOSION 

The complete description of any exothermic reaction is very difficult as 
the heat is released during the reaction and mass and energy transport 
processes should be taken into account. In this paper we are concerned 
only with the stochastic effects in the kinetics of chemical reactions and we 
use a rather crude model of reaction. Our model of the thermal adiabatic 
explosion follows one proposed by Baras et. al. (3) We assume that the 
system is homogeneous so that the temperature is uniform in space. This 
means that relaxation is synchronous throughout the system and that we 
can neglect all transport processes within it. The assumption that the 
process is adiabatic permits us to neglect the exchange of energy with the 
surroundings. It leads to the direct relationship between the number of 
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molecules of the substrate and the temperature of the system [eq. (1)], 
what significantly simplifies the model. However, the influence of fluc- 
tuations on the dynamics of the thermal explosion can be also studied 
without this assumption. The model of explosion in an open system has 
been presented recently by Nicolis, Baras, and Malek-Mansour. (8) 

Let us consider the system composed of the substrate X and the 
product A. The relative energies of X and A are displayed in Fig. 1. We 
assume that the direct reaction X ~  A goes through the activated complex 
( X ~  A)* with the activation energy Uo. It is obvious that in this model the 
activation energy of the inverse reaction A --* X is u o + r~ where r v is the 
heat of reaction X ~  A. This model, called the three level model for the 
direct reaction only, was used in the paper of Baras et a/. (3) 

In the adiabatic system the conservation of energy relates the concen- 
tration of substrate ff and the corresponding temperature of the system 
T(X) 

c v �9 T(ff) + r~ff = const. = c o T M = c~ Ti + r,  (1) 

where co is the specific heat at constant volume. TM denotes the maximal 
temperature in the system, which could be approached when all the sub- 
strate is transformed into the product and Ti is the initial temperature of 
the system. Writing eq. (1) we assume that cv and ro do not depend on tem- 
perature. 

The simplest example of the thermal explosion is the reaction X--, A. 
In this case the phenomenological kinetic equation is (3) 

dff 
d t -  k D [ T ( Y ) ]  ff (2) 

Energg 

%+r, 

0 

X 

A 

Fig. 1. The three level model of chemical reaction adopted in this paper: X, substrate; 
( X ~  A)*, intermediate complex; A, final product. 
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where kD(T) is the temperature-dependent rate constant. When the inverse 
reaction is taken into account, the phenomenological equation reads 

d~ 
dt  = --kD [ T()~) ] '  ~ + (c - 2)- k , [  T(2)] (3) 

where c is a constant depending on the initial conditions. We assume that 
the temperature dependence of the reaction rates for both direct and 
inverse reactions are given by the Arrhenius law 

( U~.T) koo=COnst. (4a) kD(T) = koD" exp k ' 

1 con t ,4b  
kB " 

The phenomenological approach neglects the influence of fluctuations 
on the dynamics of chemical reaction. This effect can be taken into account 
by using stochastic methods. The information about fluctuations can be 
obtained from the P( Y, t ) - - the probability of finding just Y molecules of 
the substrate at time t. 

It is well-known that the chemical reaction can be treated as a jump 
process. (2) Let us denote by #(Y) the death rate (i.e., the transition rate 
from the state of Y molecules to the state of Y -  1 molecules) and by 2(Y) 
the birth rate (the transition rate for the inverse process). Then the 
following master equation can be written when both direct X ~  A and 
inverse A ~ X reactions are taken into account 

(d/dt) P(Y, t ) =  - [ # ( Y ) +  2(Y)] .P(Y, t ) + p ( Y +  1 ) ' P ( Y +  1, t) 

+ 2 ( Y -  1). P ( ~ -  1, t) (5) 

where #( Y) = Y. kD[ T( Y/N) ] and 2( Y) = ( N -  Y) " kI[ T( Y/N) ]. N denotes 
the number of molecules of X for t = 0 .  For  the initial condition 
P(Y, t = 0 ) = 6 y ,  N, the phase space contains N + I  elements and at two 
boundaries, Y= 0 and Y= N, the master eq. (5) has the form 

(d/dt) P(N, t) = -# (N) .  P(N, t) + 2 ( N -  1) P ( N -  1, t) (6) 

and 

(d/dt) P(0, t )=#(1) 'P(1,  0 - 2 ( 0 )  P(0, t) (7) 

Equations (5-7) can be used also in the case when the inverse reaction is 
neglected, namely putting 2 -  0. 
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Now let us consider the influence of fluctuations on the kinetics of 
explosion. The general case of the transient bimodality induced by fluc- 
tuations was discussed by Frankowicz, Malek-Mansour, and Nicolis. (9) 
For the adiabatic thermal explosion it is quite easy to show that for any set 
of parameters of the reaction (Uo, r~/c~) and for any initial number of 
molecules N there exists an initial temperature Ti for which the behavior of 
the system is not deterministic. For  simplicity we discuss the system 
without the inverse reaction, but similar argumentation can also be presen- 
ted for the case when this reaction is taken into account. According to the 
stochastic approach the time tr, z of the transition from the state of Y 
molecules of X to the state of Z (Z < Y) molecules is equal to 

r 1 
ty, z =  Z (8~ 

j = Z + I  12(J) 

As the temperature changes during the reaction it may happen that for a 
special choice of parameters of adiabatic thermal explosion the transition 
time tN, N--K (K~N)  is much longer than the transition time tN K,o. This 
means that the induction period is very long, but when temperature 
increases, the reaction speeds up and the system approaches its final state 
very rapidly. In this case the fluctuations in the initial period have a great 
influence on the evolution of the system. For  example, it can be shown very 
easily that when 

( l.ro] Uor  1 
Ti" Ti+ N c v / " ~  2Nln(N) (9) 

then 

tN, N - - I ~ t N  1,0 (10) 

which means that the system reaches its final state just after one molecule 
of X changes into A. Therefore the behavior of the system is stochastic 
because the time when the first elementary reaction takes place is for- 
tuitous. Such a system cannot be studied with the use of phenomenological 
eq. (3); however, it can be well-described by the probability distribution 
P(Y, t). 

Usually for realistic values of parameters of the adiabatic thermal 
explosion, the inequality (10) leads to unrealistically small values of Ti. 
However, condition (9) is rather restrictive and the transient bimodality 
can also be observed with higher initial temperatures. Such cases are 
discussed in the next section. 

822/44/5-6-16 
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3. THE N U M E R I C A L  S I M U L A T I O N  OF THE A D I A B A T I C  
T H E R M A L  EXPLOSION 

The time evolution of the probability distribution P(Y, t) is deter- 
mined by numerical solution of the master eqs. (5-7). These equations are 
integrated using the Runge-Kundt  and the Merson methods. (4) Our 
calculations have been repeated for different time steps to check numerical 
stability. All numerical models discussed in this section have the same 
initial condition: P( Y, t = 0) = 6 r,10o0. 

Adiabat ic  Thermal  Explosion in the System W i t h o u t  Inverse 
Reaction 

For  numerical calculations we have chosen the following values of 
parameters describing the thermal explosion: uo/kB = 10000, rv/c ~ = 1200. In 
this point we follow Kondratiev and Nikitin (5) who discussed the adiabatic 
thermal explosion on the basis of phenoenological eq. (2) and the paper of 
Baras eta/. (3) who investigated the stochastic model for such reaction. We 
have studied the time evolution of the probability distribution for three 
different initial temperatures T i = 1100 K, 800 K, and 600 K. 

Figure 2 shows the time evolution of P( Y, t) for the initial temperature 
Ti = 1100 K. For  this temperature there is no significant difference between 
the transition times in the initial period and in the region of explosion. The 
probability distribution has a Gaussian shape. This shape is preserved in 
time and the maximum of P(Y, t) moves toward the stable state Y= 0, 
which is located at the boundary of the phase space. The comparision of 
the results of the phenomenological equation with the results of the 
stochastic approach is shown in Fig. 3. For  the initial temperature 
T~= 1100 K the time evolution of ~ is close to the ~ Y/N)(t) obtained from 
the stochastic model and also to the evolution of the maximum of P(Y, t). 
It means that in this case the phenomenological descrition is in a good 
agreement with the stochastic one. 

But when the initial temperature is lower, the behavior of the system 
characterized by the same uo/kB and rv/c~ is completely different. Figure 4 
shows the probability distribution for a few selected times for Ti = 600 K. 
The probability distribution becomes more flat during its time evolution, 
but its maximum only slightly moves toward small values of Y. The second 
maximum of P(Y, t) appears at Y= 0 and the dispersion is many times 
higher then it was for T; = 1100 K. The time evolution of the probability 
distribution for Ti = 800 K is very similar to that for Ti = 600 K, but the 
first maximum is wider and its motion toward Y= 0 is faster. Our results 
for P( Y, t) for T~ = 800 K are the same as published in Ref. 3, so we do not 
present them here. 
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Fig. 2. The evolution of P(Y, t) for high initial temperature of explosion Ti= 1100 K. 
(A) t= l167 ,  { Y ) = 6 1 3 ;  (B) t=1297, ( Y ) = 4 5 1 ;  (C) t=1470, ( Y ) = 1 9 0 ;  (D) t=1556, 
( Y )  = 94. 
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Fig. 3. The comparison of results of the phenomenological and stochastic approaches for 
high initial temperature Ti = 1100 K. Full line: the time evolution of the concentration of sub- 
strate ~ given by the phenomenological equation. Dashed line: the time evolution of the 
average value of numerical density (Y /N)  obtained with the use of the probability dis- 
tribution. Dotted line: the evolution of the maximum of P( Y, t). 
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Fig. 4. The evolution of P(Y,t) for low initial temperature of explosion, Ti=600K. 
(A) t=482231, (Y>=924, P(0, t)=0.0086. (B) t=507231, (Y>=896, P(0, t)=0.026. 
(C) t= 567231, <Y> =731, P(0, t)=0.17. (D) t=657231, <Y> =297, P(0, t)=0.64. 

The comparision of the results of the stochastic method with the 
results of the phenomenological approach for temperatures Ti = 800 K and 
Ti = 600 K is presented in the Figs. 5 and 6, respectively. It can be noticed 
that the phenomenological eq. (2) does not describe the time evolution of 
the maximum of P(Y, t) nor the evolution of the average number density 
< Y/N>.  This result indicates that when the dispersion of the process is very 
high the phenomenological approach is meaningless. 

The coexistence of two maxima of P(Y, t) for the thermal adiabatic 
explosion ( T i = 8 0 0 K )  was first observed in Ref. 3. However, in our 
calculations the second maximum appears just at Y= 0, whereas authors of 
the paper mentioned above (see also Ref. 6) suggested that the second peak 
of probability distribution first appears for Y close to zero and then moves 
to Y= 0 (compare Fig. 5 of this paper with Fig. 5 of Ref. 3 and Fig. 6 of 
Ref. 6). 
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The comparison of results of the phenomenological and stochastic approaches for the 
T i = 800 K (notation as for Fig. 3). 

Our calculations have been repeated for a few initial numbers of 
molecules of substrate and we have used different methods of numerical 
integration and different values of time step. The result that the second 
maximum appears at Y--0 has been also obtained in the paper of de 
Pasquale and Mecozzi, (~~ where the Poissonian representation technique 
has been applied for the solution of the master eq. (5-7) with 2 -  0. 

Figure 7 shows the dependence of the dispersion of P(Y, t) on the 
average numerical density of substrate { Y / N )  for the system of 1000 
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Fig. 6. The comparison of results of the phenomenological and stochastic approaches for 
low initial temperature (Ti=  600 K; notation as in Fig. 3). 
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Fig. 7. The dispersion of P(Y, t) as the function of the average numerical density for the 
processes without the inverse reaction. (A) the maxial value of dispersion. (B) Ti = 600 K. 
(C) Ti=800 K. (D) T~= 1100 K. (E) the process with #(Y)=k Y. 

molecules. The dispersions of the processes presented in Figs. 3, 5, and 6 
are compared with the dispersion of the reaction with the constant reaction 
rate and with the maximal dispersion of the probability distribution over 
the space of 1001 elements for a given ( Y/N}. The dispersion for adiabatic 
thermal explosion is many times higher than for the process with a con- 
stant reaction rate. This is the reason why any description, which uses an 
average number of molecules only (like the phenomenological one) can fail 
for the adiabatic thermal explosion. 

Systems w i t h  the  Inverse Reac t ion  

A more realistic model of the adiabatic thermal explosion must take 
into account the inverse reaction A-~ X. Here we present the numerical 
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Fig. 8. The evolution of P(Y, t) for the system with the inverse reaction Ti  = 800 K. (A) 
t=15047, (Y)=853 .  (B) t=15447, (Y>=837. (C) t-16047, (Y)=805 .  (D) t=16847, 
(Y> =743. (E) t=  17447, (Y> =673. (F) t=  17847, < Y) =615. (G) t=  18647, ( Y )  =479. 
(H) t = 19447, < Y> = 337. 
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results for the time evolution of the system of 1000 molecules obtained on 
the basis of the model with the inverse reaction, when the parameters of 
adiabatic thermal explosion are the same as in the first section: 
TM=2000 K, uo/kB= 10000, and rv/cv = 1200. We have chosen the same 
constant ko in the Arrhenius law, eq. (4), for the direct and inverse reac- 
tions koD = kol. The activation energy for the inverse reaction is taken as 
1.5 of the activation energy for the direct reaction. In the framework of the 
three level model it means that the heat of reaction is one-half of the 
activation energy for the direct reaction. Such choice of parameters is 
rather arbitrary, but it is useful from the numerical point of view as it gives 
the rate of reaction large enough to handle the calculations in a reasonable 
computing time. 

In this case the stable point xs = 0.0689 is far from the boundary of the 
phase space. Figure 8 displays the time evolution of the probability dis- 
tribution. The first peak of P(Y, t) has a long tail and the second peak 
appears due to the existence of a stable state. Although here the mechanism 
responsible for the transient bimodali ty-- the large difference of time 
scales--is identical as for the case when the inverse reaction is neglected, 
the results are slightly different. The second maximum of the probability 
distribution first appears for Y/N slightly greater than the stable point and 
then moves toward it. This effect is caused by the inverse reaction, which 
produces the flow of probability toward large values of Y. Of course the 
probability distribution exhibits the Gaussian peak at Xs with the natural 
dispersion for time t ---, oo. It is also worthwhile to add that the evolution 
presented in Fig. 8 is similar to the time evolution of the probability dis- 
tribution for the chemical explosion/y) 

\\ "'-.. 
\\ ., 

" \ \ \  

4o~}o 20ooo "~ 

Fig. 9. The comparision of results of the phenomenological and stochastic approaches for 
the system with the inverse reaction T i= 800 K. Notation as for Fig. 3. 
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Note (Fig. 8) that the dispersion of the probability distribution for the 
model with the inverse reaction is very large. It can be expected that the 
phenomenological description fails as it does in the case for the model 
without the inverse reaction. Numerical results confirm this opinion. 
Figure 9 shows the difference between the stochastic and phenomenological 
descriptions of the time evolution of the system with the inverse reaction. 
The results are very similar to those obtained in the first section for the 
same set of parameters of reaction. 

4. D ISCUSSION 

Although the presented numerical results have been obtained for the 
system of 1000 molecules we believe that they are of more general value. 

It has been shown that the phenomenological description of the 
adiabatic thermal explosion can fail when the dispersion of process is high. 
From the mathematical point of view the problem lies in the averaging of 
nonlinear function g. In the general case we have 

1 d e g ( y )  
(g(Y))=g((Y))+-2(( '~Y)2)  d-Y7 v=<r> 

1 dJ Y) v= ++=~3~ ( ( r -  (r))+) 7~ g( <~> 

# g((Y}) (11) 

The relationship ( g( Y) ) = g( ( Y) ), which is the basis of the 
phenomenological approach, is valid only when all the moments of 
Y - ( Y )  are negligible. As we have shown for any finite number of 
molecules, there exists a temperature [eq. (9)] such that the adiabatic ther- 
mal explosion is a process with high dispersion and so [cf., the second term 
of eq. (11)] the phenomenological description is meaningless. This con- 
clusion can be true for any small system with nonlinear reaction rate and 
high dispersion, so we must be very careful with the use of 
phenomenological methods in such cases. 

Our numerical results show that for both models discussed of the 
adiabatic thermal explosion, the system can exhibit transient bimodality 
behavior. However, the observed evolutions of the second maximum of the 
probability distribution are different, although in both cases the transient 
bimodality results from the difference of time scales in different regions of 
phase space. When the inverse reaction is neglected the second maximum 
appears at the stable state only. For the model with the inverse reaction the 
second peak emerges near the stable state and then moves toward it. This 



954 Gorecki and Popielawski 

difference is caused by the flow of the probability distribution connected 
with the inverse reaction. 

The model of adiabatic thermal explosion with the inverse reaction 
seems to be more realistic from the chemical point of view. Therefore, it 
seems to be a good starting point for the future development of the 
problem of stochastic theory of thermal explosions. 
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